METAL-ORGANIC COMPOUNDS

Acta Cryst. (1997). C53, 273-274

Tetra(p-chlorophenyl)tin

Seik Weng Ng
Institute of Advanced Studies, University of Malaya, 50603
Kuala Lumpur, Malaysia. E-mail: h1nswen@cc.um.edu.my

(Received 24 June 1996; accepted 5 November 1996)

Abstract

The crystal structure of tetra(p-chlorophenyl)tin, [Sn$\left.\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)_{4}\right]$, consists of discrete molecules having 1 molecular symmetry.

Comment

Except for tetra(p-methylsulfonlylphenyl)tin, which has 2 molecular symmetry (Wharf, Simard \& Lamparski, 1990), other $R_{4} \mathrm{Sn}$ tetraaryltin compounds, i.e. tetraphenyltin (Akhmed \& Aleksandrov, 1970; Belsky, Simonenko, Reikhsfeld \& Saratov, 1983; Chieh \& Trotter, 1970; Engelhardt, Leung, Ratson \& White, 1982), tetra(o-tolyl)tin (Belsky et al., 1983), tetra(m tolyl)tin (Karipides \& Oertel, 1977), tetra(p-tolyl)tin (Karipides \& Wolfe, 1975) and tetra(p-anisyl)tin (Ismailzade, 1958), as well as tetrakis(pentafluorophenyl)tin (Karipides, Forman, Thomas \& Reed, 1974) and tetra(2-thienyl)tin (Karipides, Reed, Haller \& Hayes, 1977), have $\overline{4}$ molecular symmetry in the crystalline state. Tetra(p-chlorophenyl)tin, (I), is the first example of a tetraaryltin compound having only 1 molecular symmetry.

(I)

The tetrahedral molecules of (I) are separated by normal van der Waals contacts ($\mathrm{Cl} \cdots \mathrm{Cl} 3.36-3.96 \AA$). The $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angles [107.9(2)-113.9 (2) ${ }^{\circ}$] do not differ significantly from the idealized tetrahedral angle of 109.5°. The $\mathrm{Sn}-\mathrm{C}$ bond distances [2.125(4)2.149 (4) \AA] are similar to that $[2.136(4) \AA$ A found in tetra(p-anisyl)tin (Wharf \& Simard, 1987), which possesses an electron-donating substituent, and that found in tetraphenyltin [2.143 (5) \AA; Engelhardt et al., 1982]. These distances are somewhat longer than that found in
tetramethyltin [2.102 (8) Å; Krebs, Henkel \& Dartmann, 1989].

Fig. 1. A ZORTEP (Zsolnai \& Pritzkow, 1996) plot of $[\operatorname{Sn}(p-$ $\left.\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{4}$] at the 50% probability level. H atoms are drawn as small circles of arbitrary radii.

Experimental

Tetra(p-chlorophenyl)tin was synthesized from stannic chloride and (p-chlorophenyl)magnesium chloride by a Grignard synthesis and was recrystallized from ethanol.

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)_{4}\right]$
$M_{r}=564.86$
Triclinic
$P \overline{1}$
$a=10.035$ (4) \AA
$b=11.090$ (8) \AA
$c=12.325$ (4) \AA
$\alpha=65.28(9)^{\circ}$
$\beta=70.50(3)^{\circ}$
$\gamma=70.37(5)^{\circ}$
$V=1143(1) \AA^{3}$
$Z=2$
$D_{x}=1.641 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer
ω-scans
Absorption correction:
ψ scans (North, Phillips
\& Mathews, 1968)
$T_{\text {min }}=0.643, T_{\text {max }}=0.671$
3534 measured reflections
3459 independent reflections
2998 reflections with
$I>2 \sigma(I)$

Mo $K \alpha$ radiation

$\lambda=0.71073 \AA$
Cell parameters from 19 reflections
$\theta=5.0-12.5^{\circ}$
$\mu=1.593 \mathrm{~mm}^{-1}$
$T=163$ (2) K
Parallelepiped
$0.60 \times 0.30 \times 0.25 \mathrm{~mm}$
Colourless

$$
\begin{aligned}
& R_{\text {int }}=0.1116 \\
& \theta_{\max }=24.97^{\circ} \\
& h=0 \rightarrow 10 \\
& k=-11 \rightarrow 12 \\
& l=-13 \rightarrow 14 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \quad \text { intensity decay: } 4.6 \%
\end{aligned}
$$

Refinement

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Sn} 1-\mathrm{Cll}$	2.144 (4)	Snl-C31	2.141 (4)
$\mathrm{Sn} 1-\mathrm{C} 21$	2.149 (4)	Sn1-C41	2.125 (4)
C11-Snl-C21	107.9 (2)	C21-Snl-C31	108.1 (1)
$\mathrm{C} 11-\mathrm{Sn} 1-\mathrm{C} 31$	107.4 (2)	C21-Snl-C41	108.3 (2)
C11-Snl-C41	111.2 (1)	C31-Snl-C41	113.9 (2)

Data collection: XSCANS (Siemens, 1991). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ZORTEP (Zsolnai \& Pritzkow, 1996). Software used to prepare material for publication: SHELXL93.

The author thanks Professor Ward T. Robinson of the University of Canterbury for the low-temperature diffraction data, and the University of Malaya (F102/96 and F677/96) for support.

Lists of atomic coordinates, displacement parameters, structure factors and complete geometry have been deposited with the IUCr (Reference: KH1137). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2 HU , England.

References

Akhmed, N. A. \& Aleksandrov, G. G. (1970). Zh. Strukt. Khim. 11, 891-894; Chem. Abstr. 74, 35831b.
Belsky, V. K., Simonenko, A. A., Reikhsfeld, V. O. \& Saratov, I. E. (1983). J. Organomet. Chem. 244, 125-128.

Chieh, P. C. \& Trotter, J. (1970). J. Chem. Soc. A, pp. 911-914.
Engelhardt, L. M., Leung, W.-P., Ratson, C. L. \& White, A. H. (1982). Aust. J. Chem. 35, 2383-2384.
Ismailzade, I. G. (1958). Sov. Phys. Crystallogr. 3, 153-156. (English translation.)
Karipides, A., Forman, C., Thomas, R. H. P. \& Reed, A. T. (1974). Inorg. Chem. 13, 811-815.
Karipides, A. \& Oertel, M. (1977). Acta Cryst. B33, 683-687.
Karipides, A., Reed, A. T., Haller, D. A. \& Hayes, F. (1977). Acta Cryst. B33, 950-951.
Karipides, A. \& Wolfe, K. (1975). Acta Cryst. B31, 605-608.
Krebs, B., Henkel, G. \& Dartmann, M. (1989). Acta Cryst. C45, 10101012.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1991). XSCANS Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Wharf, I. \& Simard, M. G. (1987). J. Organomet. Chem. 332, 58-94.

Wharf, I., Simard, M. G. \& Lamparski, H. (1990). Can. J. Chem. 68, 1277-1 282.
Zsolnai, L. \& Pritzkow, H. (1996). ZORTEP. ORTEP Program for PC. University of Heidelberg, Germany.

Acta Cryst. (1997). C53, 274-276

[$\operatorname{Bis}(N, N$-dimethylthiocarbamoylthio)-acetato- O]triphenyl(quinoline N-oxide- O)tin

Seik Weng Ng
Institute of Advanced Studies, University of Malaya, 50603
Kuala Lumpur, Malaysia. E-mail: hInswen@cc.um.edu.my

(Received 24 June 1996; accepted 5 November 1990)

Abstract

The Sn atom in the title compound, $\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right.$ $\left.\left(\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{4}\right)\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}\right)\right]$, shows trans $-\mathrm{C}_{3} \mathrm{SnO}_{2}$ trigonal bipyramidal coordination [$\mathrm{\Sigma C}-\mathrm{Sn}-\mathrm{C} 357.5$ (6), $\mathrm{O}-\mathrm{Sn} \leftarrow \mathrm{O} 171.4(2)^{\circ}$ and $\mathrm{Sn} \leftarrow \mathrm{O} 2.446(4) \AA$].

Comment

Triphenyltin carboxylates generally do not yield complexes with oxygen-donor ligands unless the anion possesses electron-withdrawing groups that can raise the Lewis acidity of tin. Bis(N, N-dimethyldithiocarbamyl)acetate displays enhanced acceptor properties as it is able to form $1: 1$ complexes with hexamethylphosphoramide and triphenylphosphine oxide ($\mathrm{Ng}, 1995$). The Sn atom in the title complex, (I), is also five-coordinate in a trigonal bipyramidal geometry, but the $\mathrm{Sn} \leftarrow \mathrm{O}$ bond [2.446 (4) \AA] is much longer than those in the phosphorus donors, as N -atom donors are weaker Lewis bases than P-atom donors. The bond distance is also longer than that $[2.319(6) \AA$ A found in the quinoline N-oxide complex of N-triphenylstannyl-1,2-benzisothia-zol-3(2H)-one 1,1 -dioxide ($\mathrm{Ng}, 1994$), but is similar to that $[2.459$ (5) \AA] found in the quinoline N-oxide complex of tri(p-tolyl)tin bromide (Kumar Das, Yap, Ng, Chen \& Mak, 1986).

(I)

